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ESA led ExoMars 2016 

2016 Mission Objectives 
  Provide Europe with the required technologies for successful entry 

descent and landing of a payload on the surface of Mars  
  Perform investigation on the Martian atmospheric trace gases and their 

sources  
  Ensure communications capability for the other future international 

assets on the surface of Mars 
2016 Mission Components 

  ESA provided S/C Composite  
 Entry Descent & Landing Demonstrator Module (EDM)  
 Trace Gases Orbiter (TGO) 

  NASA provided Launch vehicle  
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2016 Spacecraft Composite 

2016 Spacecraft Composite – 4400 kg launch mass 
  Orbiter Module – Trace Gases Orbiter (TGO) – 1365 kg 

 Orbiter Bus and Orbital Scientific Payload Package of 125  kg 
  Main Separation Assembly (MSA) 
  Entry Descent & Landing Demonstrator Module (EDM) 

  600 kg, 2.4m diameter EDM with EDL technology sensors 
  280 kg Surface Platform with Scientific Sensors 
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EDL key facts 

  Arrival at a fixed date (16-Oct-2016) during Dust Storm Season  
  Direct entry from hyperbolic approach, prograde entry in daylight 

   Hyperbolic excess velocity 3.256 to 3.463 km/s 
  Separation from OM oriented at EIP attitude with a Main Separation Mechanism 

providing both axial relative separation rate of 0.3 m/s and stabilization spin rate 
of 2.5 RPM at the same time 

  Entry 3 days after separation – hybernation mode (19-Oct-2016)  
 Entry velocities: co-rotating 5.70÷5.83 km/s, airspeed 5.97 ÷ 6.03 km/s 

  Deployment of a single parachute (Disk-Gap-Band Huyghens type)  
  supersonic deployment and deceleration to subsonic terminal velocities 

  EDM sub-modules release strategy with a separation operated at Back Shell/
Front Shield and at Backshell under parachute/Surface Platform 

  RCS: 3 clusters of 3 PWM engines each, directly mounted on the landed Surface 
Platform  

  Active deceleration strategy with g-turn maneuver 
  Crushable structures for impact load attenuation 
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Exomars EDM - Phases 

  ENTRY 
  Approach (coasting – 3 days from Separation 

& Hypersonic Braking 
  DESCENT 

  Parachute Deployment, Front Shield 
separation, Radar activation, Surface Platform 
separation 

  LANDING 
  Engines firing, GNC for Active Control (g-turn  

with parachute avoidance manoeuvres), 
Engines shutdown, Free-fall and touch down / 
impact on crushable structure 

Image Courtesy of ESA 
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ExoMars 2016 EDM 

EDM: Entry and Descent Subsystems + Surface Platform 
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EDM Mission Phases and GNC Tasks 
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Key GNC Tasks for  successful EDL 

1. Parachute Deployment triggering  

2. Backshell separation trigger  

DESCENT 

LANDING 
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EDM Mission Phases and GNC Tasks 

Key tasks for successful EDL 
  Parachute Deployment Triggering 

 Must be performed in the valid Mach - dynamic pressure window 
•  Early deployment  High dynamic pressure and inflation loads, canopy 

stability and drag oscillations 
•  Late deployment  No altitude margin for Descent and Landing sequence 

 Key events as Front Shield jettisoning, RDA RF channel switch on based 
on timer from Parachute Deployment trigger 

•  Need sufficient time for RDA measurement convergence (non-ambiguous 
signals) 

•  Radar in the loop trigger and Relative terrain navigation  (navigation solution 
hybridization) 

  Backshell separation trigger 
 Initiation of the landing phase – propelled phase 
 Crucial for velocities cancellation within a given propellant budget 

•  Under relevant variations of atmospheric conditions (density, winds) 
  RCS cut-off and final drop 

 Crucial wrt slopes and rocks, 2m drop altitude nominal 
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Descent Phase – Deployment triggering 

G-activated timer 
Several algorithms tested 
  Optimal performances wrt to 

given parameters 
  Altitude, Mach, dynamic 

pressure 
  Optimal  EDL parameter 

updating  tuning to 
expected atm. variability 

Need for robustness 
  A simple G-activated timer 

proved maximum robustness 
wrt environmental uncertainties 
  Deployment window met with 

no need of pre-EDL in-situ 
observations 

  7.8-11.3 km AGL (10.3 km 
nominal): 2.5 km uncertainty 

PDD Firing - Dispersion Inflation Start 

Inflation End 
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Landing - Propelled Phase GNC 

Landing phase  
  Starts when a combination of predicted altitude and vertical velocity deemed suitable for 

terminal braking within the available propellant budget   
  55÷78 m/s vertical velocity (atmospheric variability), 0÷30 m/s horizontal velocity (worst case 

mesoscale) 
  Separation trigger,  

  1 second free drop  clearance between BCV and ESP 
  Closed loop trigger  

  RCS becomes active with the Guidance and Control functions   
  3 seconds thrusters warm-up, used for de-spin and velocity maintenance (coarse mode) 

  Backshell Avoidance Manoeuvre (BAM) trigger 
  Backshell avoidance, g-turn and ESP braking is initiated. Prescribed manoeuvre time with 

fixed nominal T2W within RCS duty cycle of 50% 
  Pre-Switch-Off Trigger 

  No RDA measurement below 10 m  transition from RDA-based navigation to IMU-based 
  1.5÷2 s before the manoeuvre termination the navigation laws freeze angular and vertical 

acceleration reference profiles to avoid destabilizing effects (singularitues for 0-attitude 0-Vh) 
   Switch-off trigger  

  RCS shut down and the ESP free fall.   
  Nominal altitude of 2 m and a Nominal vertical velocity of 0 m/s  
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GNC – Descent and Rotation Control 

Descent Control Loop 
  narrower bandwidth, control 

of descent profile (altitude 
and vertical velocity) 

Rotation Control Loop 
  wider bandwidth, control of 

attitude and angular rate 
Strong Coupling 

  Vertical deceleration driven 
by attitude control 

  Attitude quaternion also 
used to convert the RDA 
from sensor frame Local 
Vertical frame 

  Control force and torque 
transformed in dispatched 
command to the 9 thrusters 
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Descent Guidance 

Closed Loop Trigger  
  Aim 

  Concurrent cancellation of vertical and horizontal 
velocities as well as angular rates and attitude 
leveling 

  Targeting of constant deceleration profile 
  Reference deceleration planned using the estimated 

altitude and vertical velocity  
  Reference deceleration re-planned at each instant  
  Updating terminated at the pre-switch-off to avoid 

instabilities and numerical singularities. 
  22-30 s manoeuvre time depending on initial mass 

(260-300 kg) 
  Pre-Switch-Off  

  In the last portion of the manoeuvre the reference 
acceleration is a frozen filtered value (reference 
decelerations accrued in previous instant of the 
propelled phase). No valid RDA below 10-12 m 
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Backshell Avoindance Manoeuvre 

BAM - guidance 
  determines the amount 

of intervention to be 
applied – large for low 
hor.velocities 

  augments the 
horizontal velocity 
components in input 
to the reference 
quaternion 
computation through 
fictitious 
superimposed terms 

  reduces progressively 
the application of the 
superimposed terms 
and nullifies these 
terms after a 
prescribed time  
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Control 

Rotation and descent control  
structure  
  Feedback term 

  computed from reference and  
estimated states (PD law) 

  Feedforward term 
  based on the reference control action predicted for the next thruster activation 

  Compensation term: introduced to cancel the known part of the non linearities 
and of the environmental disturbances 
 Model-based portion, cancels most of the known perturbations affecting the 

performances 
Requested force and torque computed by the rotation and descent control 

blocks must be verified against command saturation 
  Resources must be allocated taking into account that  

 Descent control, requires almost the same thrust level during the whole controlled 
phase (50% duty cycle allocated) 

 Attitude control requires a strong unbalance of the thrust level in the various 
thrusters for the first 4-5 seconds after BAM trigger  

  Command dispatching to 9 thrusters with pseudo inverse and dedicated pulse 
width modulation strategy 
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Command dispatching, PWM, CHT40 thruster model 

Thruster Command Module 
  CHT400 thrusters proven in space for satellite 

control 
  Dedicated operation mode for 10 Hz control 

cycles 
  time constants of the rise and decay profiles 

and the latencies of the ON and OFF 
commands to be accounted for in the PWM 
scheme 

  Split into a inverse model and a direct 
model, selected upon thruster status trigger 
 model based impulse allocation 

  Thruster dynamic characterization tests 
performed 
  Characterization of cold start profiles 
  Characterization of the performance 

parameters for several inlet pressures 
  Derivation reference performance (for GNC 

inverse model) and real performance 
(perturbed, for E2E simulations) 

  Operation at 10 Hz achieved 
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Verification Methods 

Verification of the stability for Descent GNC 
  Analytical methods based on Embedded Model Control  

 Allows verification od stability and performance of the implemented GNC 
 Verification  of robustness through assessment of the embedded model (in the 

control structure) with respect to design model including uncertainties 
  MonteCarlo Simulation 

 Dedicated campaign to verify the performance prediction with HiFi models 
 GNC design simulator models migrated to functional E2E simulator  

•  developed in TAS-I, full 6-dof simulation of EDL  
 Progressively increasing complexity and fidelity for E2E simulator 

•  Inclusion of functional modes for bus data communication to be implemented 

Estimated performance  
conservative wrt MC 
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Performance – Descent and Impact 

Altitude AGL 

Vertical Velocity 

Horizontal Velocity 
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BAM - Performance 

BAM effectiveness:  BCV always 
“overtakes” 
Minimum distance to be guaranteed 
  Wide spread: 30÷500 m related to 

relevant horizontal wind range up 
to 30 m/s 

  Clearance wrt parachute 
canopy guaranteed 

Simulation Set: MY24 
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Conclusions 

General overview of GNC for the ExoMars 2016 European provided   
Key focus on the landing phase, the core of the mission implying a loop of 

control closed on PWM retro-rockets   
 Algorithmic functional architecture and verification strategies (analytic assessment 

and Montecarlo simulations) 
Performance targets compatible with crushable structure limits appear to be 

reachable.   
 Margins adequate to account for the uncertain factors and the model factors 

  Requirements at touch down verified 
Future work 

  Model improvement from unit and subsystem tests 
 Engines response at several feed pressures (performed) 
 RCS hydraulic mockups  
 Radar Doppler Altimeter field tests 
 Parachute High Altitude Drop Tests 

  Simulator upgrade from performance model and inclusion of functional layers 
for GNC modules 
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BACKUP SLIDES 
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Heritage - Shapes 

Comparison of Exomars EDM to previous missions 
  Starting point – Use of databases in open literature 
  Work plan – improve and refine for the specific Exomars mission 

  specific EXM entry velocity and ballistic factor, specific season, flight profile not 
fully covered by the previous missions 

  Dedicates numerical and experimental programme for AEDB and ATDB building 
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Exomars EDM vs MER 


